

Scalable and Reliable IGCT Power Semiconductor Platform for Offshore Wind Turbines

Christian Winter, Hitachi Energy, Switzerland

Personal Introduction

Speaker:	Christian Winter
Company:	Hitachi Energy Semiconductors, Switzerland, joined 2014.
Position:	Global Product Manager
Job Experience:	More than 25 years in Power Electronics Application and Semiconductors.

- The importance of reliability and scalability in Offshore Wind turbine application
- IGCT application exemplified via ABB/Hitachi Energy solutions
- The Integrated Gate Commutated Thyristor (IGCT)
- Power Scaling: Increasing the Power Handling Capability: Gen 3 vs. Gen 2 devices Features and Parameters
- Gen 3 Platform scaling to larger size and higher voltage
 - 8.5 kV asym. IGCT with pole piece diam 85 mm (L-size)
 - 8.5 kV RC IGCT with pole piece diam 138mm (Y-size)
- IGCT Reliability Field Experience and design for reliability
- Conclusion

The importance of reliability and scalability in Offshore Wind turbine application

pcim

Hitachi Energy

Demand for more powerful wind turbines

- Currently global offshore wind turbine manufactures offer ratings of 14 to 15 MW *).
- Larger power ratings support the goal of reducing Levelized Cost of Energy (LCoE).
- Trend is expected to persist potentially leading to turbine power ratings of 20 MW+.
- Offshore wind turbine converter require higher power handling capability.
- Applying devices with higher power handling capability allow to keep the low number of devices.


Reliability

- Reliability is of particular importance for offshore wind turbine application due to remote location.
- Low number of component and high reliability of the device will ensure inherent high converter reliability.

Voltage scaling

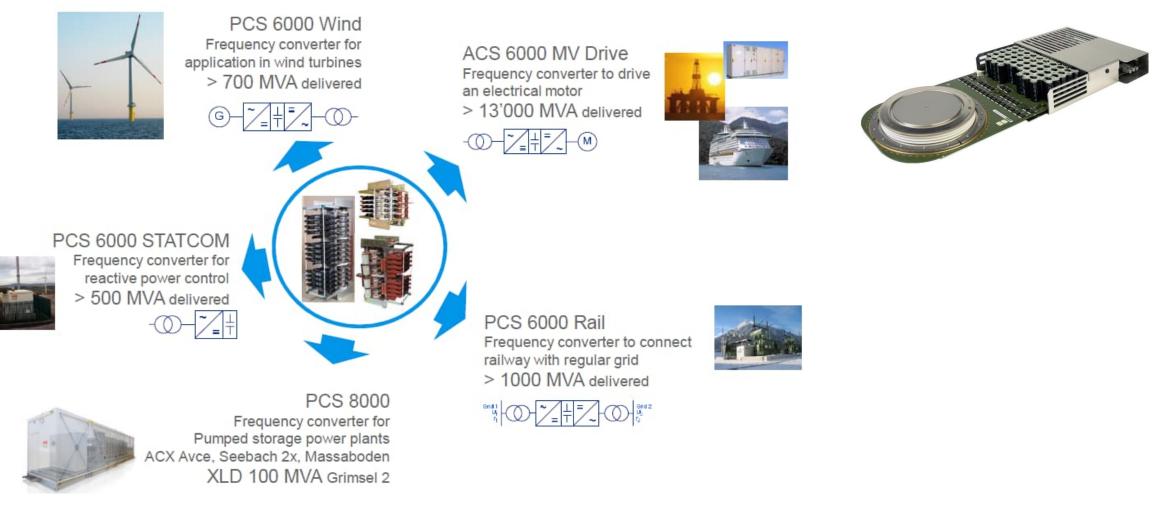
- Higher voltage ratings allow for lower currents at same power handling capability.
- Enabling compact converter designs due to smaller requirements for cross-section of bus bars and cabling.

New IGCT platform is ideal for Offshore wind application with high reliability demands and increasing demand in power handling capability

2024-09-03

*) - GE Renewable Energy, "Haliade-X offshore wind turbine," GE, [Online]. Available: https://www.ge.com/renewableenergy/wind-energy/offshore-wind/haliade-x-offshore-turbine. [Accessed 18.06.2024].
 - Vestas, "V236-15.0 Mw[™]," Vestas, [Online]. Available: https://www.vestas.com/en/products/offshore/V236-15MW. [Accessed 18.06.2024].
 - Siemens Gamesa Renewable Energy, "SG 14-236 DD," Siemens Gamesa Renewable Energy, [Online]. Available: https://www.siemensgamesa.com/en-int/products-and-services/offshore/wind-turbine-sg-14-236-dd. [Accessed 18.06.2024].

IGCT application exemplified via ABB/Hitachi Energy solutions

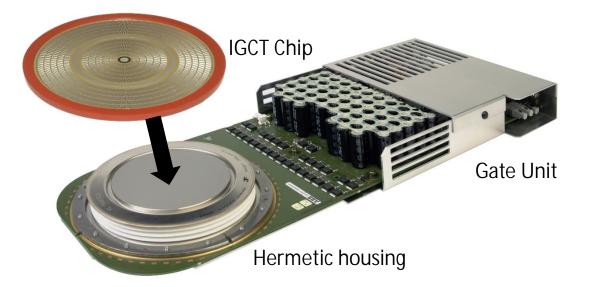

pcim Inspire the Next

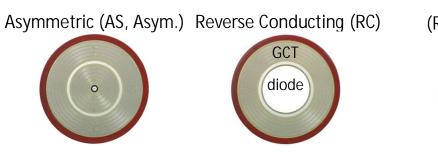
ASIA

Hitachi Energy

HITACHI

Growing markets: Rail Intertie (PCS 6000), STATCOM (PCS 8000 & PCS 6000 Rail) and Offshore Wind (PCS 6000 Wind)


The Integrated Gate Commutated Thyristor (IGCT)



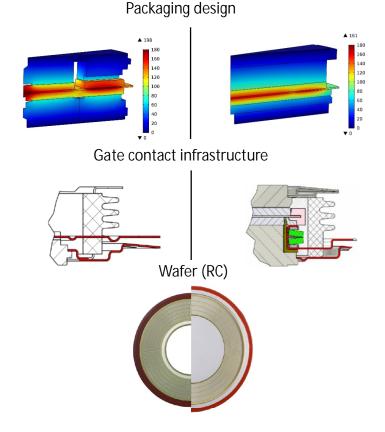
IGCT:

- Thyristor structure ensure very low On-state losses.
- Monolithic chip: Optimal ratio of edge termination to active area, especially of importance for higher voltage.
- IGCT chip in hermetic housing ensures optimal protection from environmental impacts.

IGCT Types

0

Increasing the Power Handling Capability: Gen 3 vs. Gen 2 devices


Gen 3 features

- Applied to our latest 85 mm pole-piece diameter (L-housing) RC and AS IGCTs with voltage rating of 4.5 kV
- Retain outer dimensions for compatibility with application and integrated gate unit.

Gen 3 optimization focus: turn-off and thermal performance

- Minimize gate-circuit impedance:
 - Moved gate contact infrastructure to device periphery.
 - Optimized routing of gate contact through the housing.
- Improved thermal performance by using monolithic Molybdenum disk and asymmetric anode and cathode side pole piece thickness.
- Increased device diameter through efficient use of raw silicon wafer.
- Turn-off current increased by adjusting doping profile

Previous versus New Generation 3

HITACHI

Inspire the Next

Hitachi Energy

Parameter improvement Gen 3 vs. Gen 2 - L-Size 4.5 kV AS device

Gen3

Hitachi Energy

Feature	Generation 2	Generation 3	
IGCT	5SHY 55L4520	5SHY 65L4522 (low dyna 5SHY 65L4521 (low stati	•
Active area	1 a.u.	x 1.22 +	22%
SOA	5.5kA	6.0kA (5SHY 65L4522) 6.5kA (5SHY 65L4521)	
Rth _{JH}	11.5K/kW (@40kN)	9.2K/kW (50kN)	- 20%
T _{Jmax}	125°C	140°C	
Max RMS on-state current TC = 85°C	2940A	3640A (5SHY 65L4522) 4340A (5SHY 65L4521)	
Diode	5SDF 20L4520	5SDF 34L4520	
Structure	Planar	Structured Thinner silicon compare	d to Gen2
RthJH	9K/kW	7.8K/kW -	-13%
Max RMS on-state current $T_{c} = 70^{\circ}C$	3100A	4220A -	+36%

Further details see: U. Vemulapati et. al.; New Generation 4.5kV IGCT and Fast Recovery Diode for Railway Power Supply Application; PCIM 2024 Nürnberg

ASIA

Gen 2

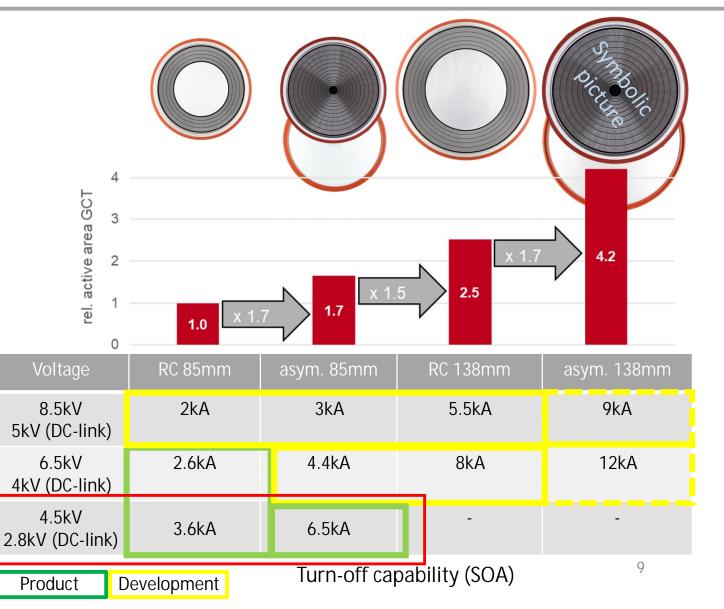
 \rightarrow

Gen 3 Platform – scaling to larger size and higher voltage

ASIA HITACHI Inspire the Next

@Hitachi Energy

Scaling

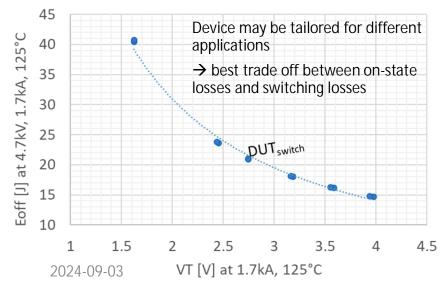

Voltage scaling

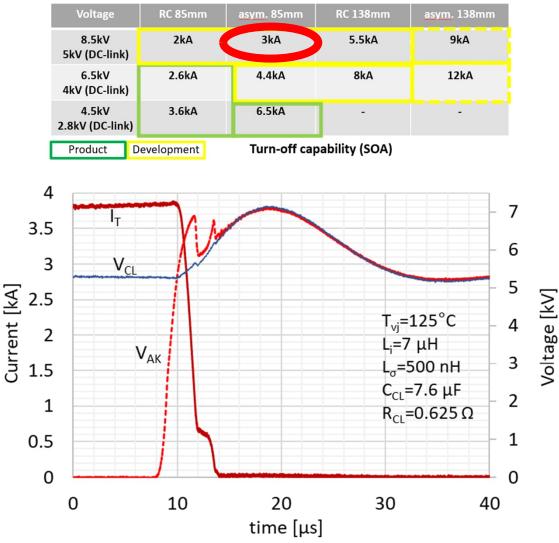
- Optimizing of the vertical IGCT design
- adopting of edge termination to voltage class
- adopting of the packaging height (creepage distance, strike distance)
- Current handling capability reduces with voltage rating.

Current capability scaling

- RC-IGCT \rightarrow asym. IGCT (& discrete FRD)
- Increased Device area
- Two size pole piece diameter:
 85mm / 138mm
- Current handling capability scales with IGCT active area

2024-09-03

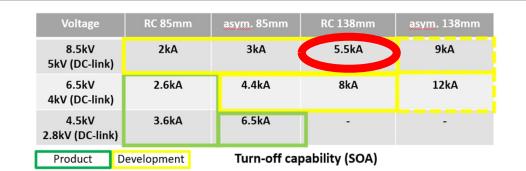


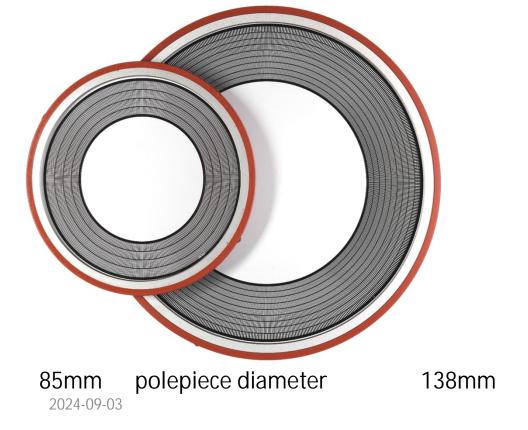


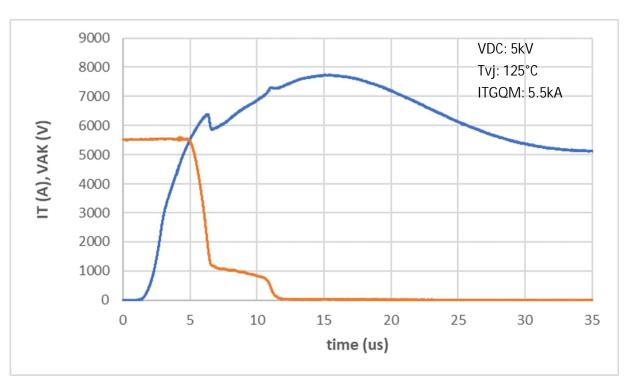
8.5 kV asym. IGCT with pole piece diam 85 mm (L-size)

8.5kV IGCT for 5kV DC-link

- Allow for converter current reduction, at same power handling capability.
- Reducing current particularly interesting for offshore wind application
- Converter standardization: Use of scalable device in voltage is essential to offer cost competitive solutions.
- A 8.5 kV device is the most cost effective and simplest way to increase the system voltage without replacing the well-known converter topology.


Hitachi Energy




8.5kV RC IGCT with pole piece diam 138mm (Y-size)

8.5kV IGCT for 5kV DC-link

- High voltage 8.5 kV and 138mm large size IGCT allow for increase of power handling capability and current reduction vs. smaller 85mm IGCT.
- Most compact and cost optimized design possible e.g. no separate freewheeling diode required. Preventing parallel connection of converters per turbine.

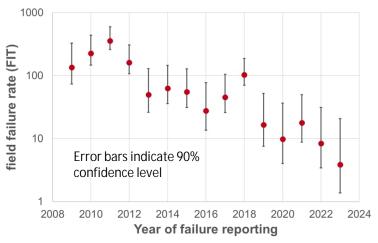
@Hitachi Energy

IGCT design for reliability

Power semiconductor

- Optimal ratio between edge termination and active area
- Robust pressure contact design to guarantee high power cycling capability

Gate unit:


- Specifically designed for IGCTs
- Integrated with GCT as single unit
- Turn-off circuit designed with large margin

Package (hermetic press pack):

- Handles large fault currents
- Offers SCFM (no degradation in VT >4000h²⁾)

Failure rate during useful life ¹⁾

- Field returns: from MVD application
- Comparison of reliability of Offshore wind and MVD applications with IGCTs states similar failure rate for both ³⁾.
- Failure cause: 50% GCT, 50% gate unit.

 Decreasing failure rate due to continuous improvement Device analysis after long term use

 IGCT from long term applications were returned from field, remeasured and analysed:

Application	Description	Operation time
MVD	Metal drive (severe load cycling)	8 years
MVD	Gravel lift Gotthard tunnel	15 years
Intertie	Rail intertie	17 years

- No degradation of the gate circuit impedance detected.
- Low mechanical wear-out of dry contact interfaces compared to reliability test power cycling.

IGCT shows excellent field reliability - the device of choice for high-power applications such as offshore wind

2024-09-03

T. Stiasny, O. Quittard, C. Waltisberg, U. Meier: Reliability evaluation of IGCT from accelerated testing, quality monitoring and field return analysis. Proc. ESREF, Denmark, 2018.
 D. Weiss et al.,: IGCT-based modular multilevel converter for an AC-AC railway supply, Proc. PCIM Europe, 2017.
 J. Wahlstroem, Ch. Winter, "Scalable and reliable medium voltage converters for high power turbines", in Wind Europe 2022 annual event 5.-7. April 2022, Bilbao, Spain, 2022.

- Scalability and Reliability is of particular importance for Offshore wind turbine application.
- The 85 mm, Generation 3 devices with 4.5 kV offer improved turn-off capability and higher power handling capability
- The Generation 3 IGCT is a powerful platform and ideal for scaling in:
 - blocking voltage (DC-link voltage)
 - current handling capability (GCT active area)
- IGCTs are high reliable devices proven by field data

The Gen 3 IGCT platform is is ideal for Offshore wind application with high reliability demands and scalability requirements towards higher power handling capability

Thank you for your attention! I am happy to answer your questions, just visit me at our Hitachi Energy PCIM booth or contact me at christian.winter@hitachienergy.com

HITACHI Inspire the Next

