

Next generation 4.5 kV IGBT StakPak module and FRD for 8GW HVDC application

Jeremy Jones, Senior R&D Engineer, Hitachi Energy, Switzerland

Personal Introduction

Speaker:	Jeremy Jones
Company:	Hitachi Energy, Switzerland, joined 2018
Departement:	R&D BiMOS, Product Evaluation and Qualification
Position:	Senior R&D Engineer
Alma mater:	ETH Zurich, Electrical Engineering and Information Technology, BSc.

Outline

- Introduction: Motivation and goal
- Power semiconductor devices
- IGBT chip technology: Improvements and results
- Discrete FRD technology
- 8 GW HVDC system simulation
- Summary and conclusion
- Q&A

Introduction

ASIA

Motivation

- HVDC transmission is critical technology in the energy transition with trend toward 8 GW VSC-HVDC systems
- Power semiconductors are key components of HVDC systems
- Demand for increased capability of power semiconductors

Goal

- Best in class IGBT and FRD for VSC-HVDC MMC topology
- Device design
 - *I*_{nom} up to 5 kA
 - Operating temperature up to T_{vi} =150°C
 - Low on-state and switching losses
 - Maintain excellent SOA capability
 - Strong surge current capability

Power semiconductor devices

StakPak 4.5 kV IGBT:

- Fully IGBT module for higher current rating
- Scalable up to 5 kA •
- Presspack, mounting force 60-110 kN ٠

- Fast recovery diode:
- Discrete diode offers high surge current capability
- Scalable platform 4-5 kA, three housing types •
- Mounting force: 90 kN

4.5 kV / 2.5 kA IGBT-only 3-pocket 5SMA2500L450300

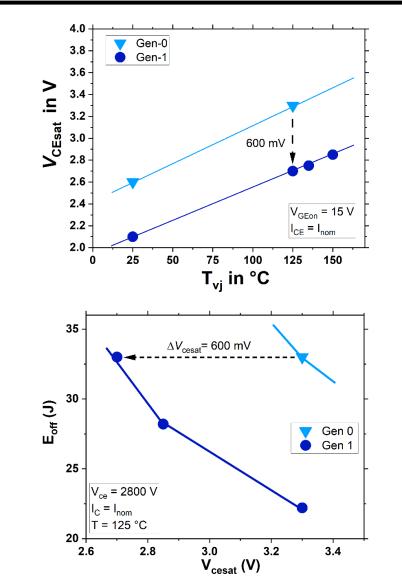
4.5 kV / 5 kA IGBT-only 6-pocket 5SMA5000L450300

Pole piece 110 mm (PP110)

Pole piece 119 mm (PP119)

Pole piece 143 mm (PP143)

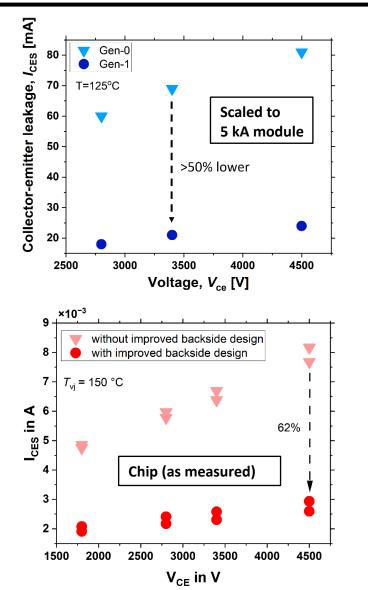
ASIA



Hitachi Energy

IGBT chip technology: Improvements and results

- Enhanced planar cell concept (SPT++) as reference technology (Gen-0)
- Optimized chip (Gen-1)
- Optimized for on-state losses
 - On-state losses dominate in HVDC transmission
 - Reduction of V_{CEsat} by 600 mV
 - Enhanced injection efficiency of the backside collector
 - Higher channel density
- Improved technology trade-off curve
 - Improved (shorter) termination design for more active area
 - Reduced thickness of Si drift region
 - No adverse affect on turn-off losses
- Turn-on losses improved close to 40%
 - Higher channel density

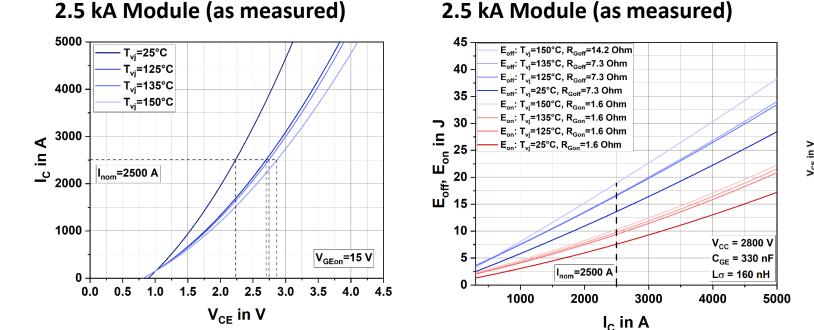


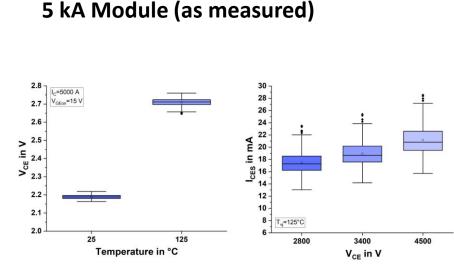
ASIA

HITACHI Inspire the Next

IGBT chip technology: Improvements and results

- Advanced backside technology for lower collector-emitter leakage
- Over 50% reduced collector-emitter leakage current between generations at T_{vi}=125°C
- Gen-1 with vs. without new backside: 62% lower collector-emitter leakage at T_{vi}=150°C and VCE=4500 V
- HTRB 1000 h (80% V_{CES}) test successfully passed at T_{vi}=150°C
- Cosmic ray 100 FIT successfully passed with margin for target V_{CES}=2.8 kV


ASIA



7

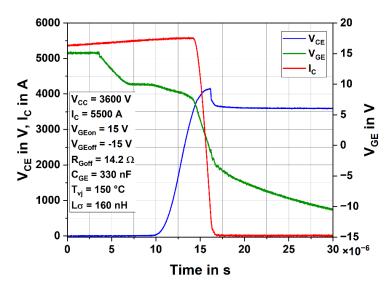
IGBT 2.5 kA and 5 kA module results

ASIA

HITACHI Inspire the Next

Hitachi Energy

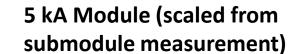
- Nominal on-state voltage V_{CEsat}< 3 V at all temperatures
- Positive temperature coefficient of resistivity
- Nominal turn-off switching losses
 Eoff < 20 J for all temperatures (<
 40 J scaled to 5 kA module)
- *L*_σ=160 nH
- Low turn-on losses

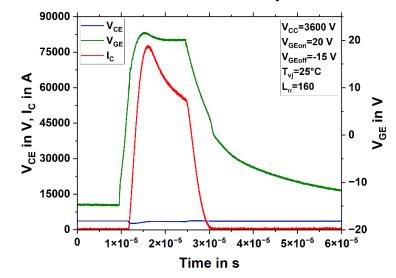

- 5 kA production data, T_{vj} =125°C
- Losses and collector emitter leakage current in accordance with 2.5 kA results
- Qualification of 5 kA IGBT ongoing

IGBT 2.5 kA and 5 kA module results

@Hitachi Energy

HITACHI Inspire the Next


2.5 kA Module (as measured)



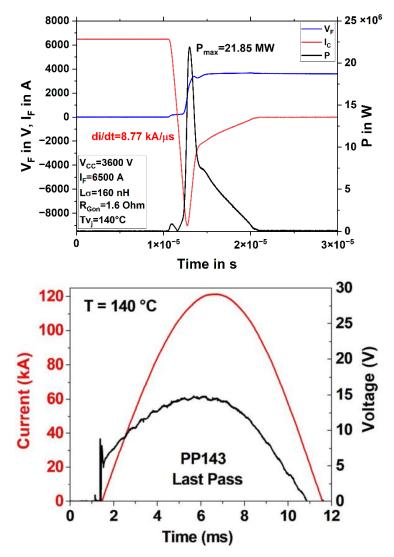
5 kA Module (scaled from submodule measurement) 40000 V_{cc}=3600 V V_{CE} 35000 - V_{GEon}=15 V V_{GE} V_{GEoff}=-15 V I_C 30000 - T_{vi}=150 °C 10 ∢ Lσ=160 nH 25000 V_{GE} in V <u>ں</u> > 20000 Λ t_n>18 μs V_{ce} in 15000 10000 -10 5000 0 -20 2.0×10⁻⁵ 4.0×10⁻⁵ 6.0×10⁻⁵ 0.0 8.0×10⁻⁵ Time in s

- Extended RBSOA
- $V_{\rm CC}$ =3.6 kV, $T_{\rm vj}$ =150°C, L_{σ} =160 nH
- *I*_C > 2 x *I*_{nom}

- Short-circuit SOA pulse
- $V_{\rm CC}$ =3.6 kV, $T_{\rm vj}$ =150°C, L_{σ} =160 nH
- t_p > 18 μs

ASIA

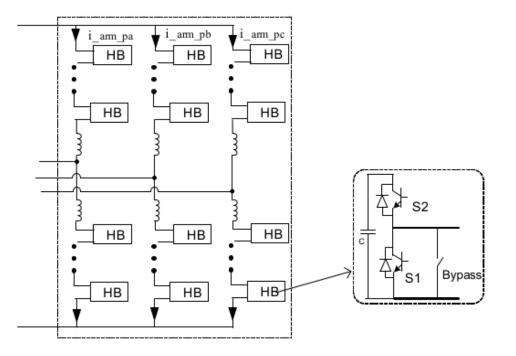
- Short-circuit SOA pulse
- V_{CC} =3.6 kV, T_{vj} =25°C, V_{GEon} >19 V, t_p =10 µs, L_{σ} =160 nH
- *I*_{cmax} capability > 75 kA


Discrete FRD technology

HITACHI Inspire the Next

- Typical V_F =1.8 V / 2.7 V for I_F =2.5 / 5.5 kA at T_{vi} =140°C for all diode sizes
- Cosmic ray withstand capability:
 - 0.1 FIT up to 3.4 kV
 - 400 FIT up to 3.6 kV
- Diode SOA
 - $V_{\rm CC}$ =3.6 kV, $I_{\rm F}$ =6.5 kA, $T_{\rm vi}$ =140°C, L_{σ} =160 nH
 - Pmax approx. 22 MW
 - di/dt close to 9 kA/µs
- Surge current
 - $t_p = 10 \text{ ms}, T_{vj} = 140^{\circ}\text{C}$
 - Data sheet I_{FSM} 75 kA, 80 kA and 100 kA
 - Last pass I_{FSM} 85 kA, 95 kA, 117 kA
- Snapiness
 - $V_{\rm CC}$ =3.6 kV, low current, $T_{\rm vi}$ =25°C, L_{σ} =160 nH
 - Provoked voltage spikes as high as 7 kV without destruction 9/3/2024

ASIA



8 GW HVDC system simulation

Hitachi Energy

Operating conditions

- IGBT module: 4.5 kV / 5 kA Gen-1 StakPak
- FRD: 4.5 kV / 5 kA FRD
- DC voltage: ±800 kV DC voltage
- Cell voltage: V_{CC}=2800 V
- AC side current: $I_{\rm rms}$ =6670 A
- Cooling liquid temperatures *T*_w=60°C
- Switching frequency f_{sw} =96 Hz
- DC power above 8 GW

Operating mode	T _{vj} IGBT [°C]	<i>T</i> _{vj} Diode [°C]	Losses [%]
Inverter	143.3	93.3	0.99
Rectifier	128.9	107.5	0.95

Summary and conclusion

Hitachi Energy

Improved SPT++ IGBT	Operating temperature T _{vj} =150°C		
platform (4.5 kV / 2.5 kA, 5 kA)	 Losses Reduction of V_{CEsat} by 600 mV compared to SPT++ technology Nominal V_{CEsat} below 3 V Superior technology curve E_{off} below 20 J / 40 J for 2.5 kA / 5 kA IGBT 	SOA • RBSOA: V_{CC} =3.6 kV and $I_C > 2 \times I_{nom}$ • SCSOA: $t_p > 10 \mu s$ • SCSOA (T_{vj} =25°C): $I_{SCmax} > 75 kA$ HTRB • 1000 h at T_{vj} =150°C	
FRD platform (4.5 kV / 4-5 kA)	Operating temperature T _{vj} =140°C		
	 Losses 1.8 V / 2.7 V at I_F=2.5 kA / 5.5 kA Cosmic ray 0.1 FIT up to 3.4 kV and 400 FIT up to 3.6 kV 	 SOA 22 MW peak power 9 kA/μs di/dt Surge current I_{FSM} at 75, 80 and 100 kA 	

Hitachi Energy continues to build on its extensive experience to push the limits of power semiconductors. The new devices will help establish the next generation of VSC-HVDC systems rated at 8 GW.

Q & A

Do you have any questions?

Visit the Hitachi Energy booth F08, Hall 11

Further reference:

"A 4.5 kV Fast Recovery Diode Platform for High-Current IGBTs" - Dr. J. Vobecky - PCIM Europe 2024 "Novel MOS-cell Engineered 4.5 kV Enhanced-planar IGBT Device for Improved Short-Circuit Capability" - Dr. G. Gupta - PCIM Europe 2023